CHAPTER 18

ELECTRICAL PROPERTIES

PROBLEM SOLUTIONS

Ohm’s Law
Electrical Conductivity

18.1 (a) Compute the electrical conductivity ofa 5.1-mm (0.2-in.) diameter cylindrical silicon specimen
51 mm (2 in.) long in which a current of 0.1 Apassesin an axial direction. Avoltage of12.5 Vis measured across
two probes that are separated by 38 mm (1.5 in.).

(b) Compute the resistance over the entire 51 mm (2 in.) ofthe specimen.
Solution

This problem calls for us to compute the electrical conductivity and resistance of a silicon specimen.

(a) We use Equations 18.3 and 18.4 for the conductivity, as
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And, incorporating values for the several parameters provided in the problem statement, leads to
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(b) The resistance, R, may be computed using Equations 18.2 and 18.4, as
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18.2 A copper wire 100 m long must experience a voltage drop ofless than 1.5 Vwhen a current of2.5 A

passes through it. Using the data in Table 18.1, compute the minimum diameter ofthe wire.

Solution

For this problem, given that a copper wire 100 m long must experience a voltage drop of less than 1.5 Vwhen
a current of 2.5 A passes through it, we are to compute the minimum diameter of the wire. Combining Equations 18.3

and 18.4 and solving for the cross-sectional area A leads to

or
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When values for the several parameters given in the problem statement are incorporated into this expression, we get

_ 4)(2.5 A)(100 m)
(M5 W[6.0 x 107 @-m)]

~1.88x 10 m=1.88 mm



18.3 An aluminum wire 4 mm in diameter is to offer a resistance ofno more than 2.5 Q. Using the data in

Table 18.1, compute the maximum wire length.
Solution

This problem asks that we compute, for an aluminum wire 4 mm in diameter, the maximum length such that
the resistance will not exceed 2.5 Q. From Table 18.1 for aluminum, c = 3.8 x 107 (Q-m)'l. If d is the diameter then,
combining Equations 18.2 and 18.4 leads to

RA
p

d 2
1= = RocA= RGTE[E]

IR
=25 Q)38 x 107 (Q-m)—l](n)[%J = 1194 m



18.4 Demonstrate that the two Ohm’s law expressions, Equations 18.1 and 18.5, are equivalent.
Solution

Let us demonstrate, by appropriate substitution and algebraic manipulation, that Equation 18.5 may be made

to take the form of Equation 18.1. Now, Equation 18.5 is just

(In this equation we represent the electric field with an “E”.) But, by definition, J is just the current density, the

. . I . . A% o
current per unit cross-sectional area, or J = e Also, the electric field is defined by E = T And, substituting these

expressions into Equation 18.5 leads to
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But, from Equations 18.2 and 18.4
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Solving for V fromthis expression gives V= IR, which is just Equation 18.1.



18.5 (a) Using the data in Table 18.1, compute the resistance ofa copper wire 3 mm (0.12 in.) in diameter
and 2 m (78.7 in.) long. (b) What would be the current flow ifthe potential drop across the ends ofthe wire is 0.05

V? (c) What is the current density? (d) What is the magnitude ofthe electric field across the ends ofthe wire?
Solution

(a) In order to compute the resistance of this copper wire it is necessary to employ Equations 18.2 and 18.4.

Solving for the resistance in terms of the conductivity,

From Table 18.1, the conductivity of copper is 6.0 x 107 (Q-m)'l, and

R = 1 _ 2 m
[djz 3%x103m)
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(b) If V=0.05 Vthen, from Equation 18.1

S S 10.6 A 5 =15 x 100 A/m?

(d) The electric field is just

E=—=—""=25x 102 V/m



Electronic and Ionic Conduction

18.6 What is the distinction between electronic and ionic conduction?

Solution

When a current arises from a flow of electrons, the conduction is termed electronic; forionic conduction,

the current results fromthe net motion of charged ions.



Energy Band Structures in Solids

18.7 How does the electron structure ofan isolated atom differ fromthat ofa solid material?
Solution

For an isolated atom, there exist discrete electron energy states (arranged into shells and subshells); each
state may be occupied by, at most, two electrons, which must have opposite spins. On the other hand, an electron
band structure is found for solid materials; within each band exist closely spaced yet discrete electron states, each of
which may be occupied by, at most, two electrons, having opposite spins. The number of electron states in each

band will equal the total number of corresponding states contributed by all of the atoms in the solid.



Conduction in Terms of Band and Atomic Bonding Models

18.8 In terms of electron energy band structure, discuss reasons for the difference in electrical

conductivity between metals, semiconductors, and insulators.

Solution

For metallic materials, there are vacant electron energy states adjacent to the highest filled state; thus, very
little energy is required to excite large numbers of electrons into conducting states. These electrons are those that
participate in the conduction process, and, because there are so many of them, metals are good electrical conductors.

There are no empty electron states adjacent to and above filled states for semiconductors and insulators,
but rather, an energy band gap across which electrons must be excited in order to participate in the conduction
process. Thermal excitation of electrons will occur, and the number of electrons excited will be less than for metals,
and will depend on the band gap energy. For semiconductors, the band gap is narrower than for insulators;
consequently, at a specific temperature more electrons will be excited for semiconductors, giving rise to higher

conductivities.



Electron Mobility

18.9 Briefly tell what is meant by the drift velocity and mobility ofa free electron.
Solution

The drift velocity of a free electron is the average electron velocity in the direction of the force imposed by
an electric field.
The mobility is the proportionality constant between the drift velocity and the electric field. It is also a

measure of the frequency of scattering events (and is inversely proportional to the frequency of scattering).



18.10 (a) Calculate the drift velocity of electrons in germanium at room temperature and when the
magnitude of the electric field is 1000 V/m. (b) Under these circumstances, how long does it take an electron to

traverse a 25-mm (1-in.) length ofcrystal?
Solution

(a) The drift velocity of electrons in Ge may be determined using Equation 18.7. Since the room temperature
mobility of electrons is 0.38 m%/V-s (Table 18.3), and the electric field is 1000 V/m (as stipulated in the problem

statement),
vy = HE
=(0.38 m?/V-5s)(1000 V/m) = 380 m/s

(b) The time, t, required to traverse a given length, 1 (=25 mm), is just
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18.11 At room temperature the electrical conductivity and the electron mobility for copper are 6.0 x 10’
(Q-m)" and 0.0030 m’/V-s, respectively. (a) Compute the number of free electrons per cubic meter for copper at

room temperature. (b) What is the number offree electrons per copper atom? Assume a density of8.9 g/cn’.
Solution

(a) The number of free electrons per cubic meter for copper at room temperature may be computed using

Equation 18.8 as

(¢

0=
le| u

_ 6.0 x 107 (Q-m)~!
(1.602 x 10712 €)(0.003 m?/V-5)

=125x 1029 m3

(b) In order to calculate the number of free electrons per copper atom, we must first determine the number of
copper atoms per cubic meter, N~,. From Equation 4.2 (and using the atomic weight value for Cu found inside the

front cover—viz. 63.55 g/mol)
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_ (6.022 x 1023 atoms/mol)(8.9 g/cm?)(10¢ cm? /m?)
63.55 g/mol

=843 x 1028 m3

(Note: in the above expression, density is represented by p'in order to avoid confusion with resistivity which is
designated by p.) And, finally, the number of free electrons per aluminumatomis just n/N¢,

n 125 x10% m3
Nea 843 x 1028 m™3

=148



18.12 (a) Calculate the number of free electrons per cubic meter for gold assuming that there are 1.5 free
electrons per gold atom. The electrical conductivity and density for Au are 4.3 x 107 (Q-m)™" and 19.32 g/cn?’,

respectively. (b) Now compute the electron mobility for Au.
Solution

(a) This portion of the problem asks that we calculate, for gold, the number of free electrons per cubic meter

(n) given that there are 1.5 free electrons per gold atom, that the electrical conductivity is 4.3 x 107 (Q-m)'l, and that
the density (pAu) is 19.32 g/cm3. (Note: in this discussion, the density of silver is represented by p/;u in order to

avoid confusion with resistivity which is designated by p.) Since n = 1.5Np,,, and Ny, is defined in Equation 4.2

(and using the atomic weight of Au found inside the front cover—viz 196.97 g/mol), then

N
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_ 15 (19.32 g/em?)(6.022 x 1023 atoms/mol)
' 196.97 g/mol

=8.86 x 1022 cmi> =8.86 x 1028 m3
(b) Now we are asked to compute the electron mobility, p.. Usin uation 18.8
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Electrical Resistivity of Metals

18.13 FromFigure 18.38, estimate the value of Ain Equation 18.11 for zinc as an impurity in copper—zinc

alloys.
Solution

We want to solve for the parameter A in Equation 18.11 using the data in Figure 18.38. From Equation 18.11

Pi
¢ -c)

However, the data plotted in Figure 18.38 is the total resistivity, p;.;, and includes both impurity (p;) and thermal
(py contributions (Equation 18.9). The value of p, is taken as the resistivity at ¢, = 0 in Figure 18.38, which has a
value of 1.7 x 1078 (Q-m); this must be subtracted out. Below are tabulated values of A determined at ¢;=0.10, 0.20,

and 0.30, including other data that were used in the computations. (Note: the c; values were taken from the upper

horizontal axis of Figure 18.38, since it is graduated in atom percent zinc.)

¢ l-¢; Ptotal (€2-m) p; (Q-m) A (QQ-m)
0.10 0.90 40x 108 231078 2.56 % 1077
0.20 0.80 54x% 1078 37x 1078 231 % 1077
0.30 0.70 6.15% 108 445x 1078 212 % 1077

So, there is a slight decrease of A with increasing c;.



18.14 (a) Using the data in Figure 18.8, determine the values of p, and a from Equation 18.10 for pure
copper. Take the temperature T to be in degrees Celsius. (b) Determine the value of Ain Equation 18.11 for nickel
as an impurity in copper, using the data in Figure 18.8. (¢) Using the results of parts (a) and (b), estimate the

electrical resistivity of copper containing 1.75 at% Ni at 100°C.

Solution

(a) Perhaps the easiest way to determine the values of p; and a in Equation 18.10 for pure copper in Figure
18.8, is to set up two simultaneous equations using two resistivity values (labeled p; and p,) taken at two

corresponding temperatures (T; and T,). Thus,
Py =Pt aly
P =Pot aly
And solving these equations simultaneously lead to the following expressions fora and py:

a= Pt~ P2
-1

From Figure 18.8, let us take T; =-150°C, T, =-50°C, which gives p; =0.6 x 108 (Q-m), and p, =1.25 x 108 (Q-m).

Therefore

_Pu P
-1

a

[(06 x 10-8) — (1.25 x 10-8)JQ-m)
~150°C — (=50°C)

6.5x 10" (Q-m)/°C



and

_ Pt1 ~ P2
Po = Pu Tl{ T T,

[(06 x 10-8) — (1.25 x 10-8) Q- m)

= (06 x 10°%) — (~150)
~150°C — (-50°C)

=1.58 x 108 (Q-m)
(b) For this part of the problem, we want to calculate A from Equation 18.11

pi = Aq( - ¢)

In Figure 18.8, curves are plotted for three c; values (0.0112, 0.0216, and 0.0332). Let us find A for each of these ¢;'s by
taking a p; .. from each curve at some temperature (say 0°C) and then subtracting out p; for pure copper at this

same temperature (which is 1.7 x 108 Q-m). Below is tabulated values of A determined from these three c; values,

and other data that were used in the computations.

¢ l-c¢, Ptotal (Q-m) P; (Q-m) A(Q-m)
0.0112 0.989 3.0x 108 13x 1078 1.17 % 10°°
0.0216 0.978 42x 108 25% 1078 1.18 x 1070
0.0332 0.967 55x 108 3.8x 1078 1.18 x 10°°

The average of these three A values is 1.18 x 107 (Q-m).

(c) We use the results of parts (a) and (b) to estimate the electrical resistivity of copper containing 1.75 at%
Ni(c;=0.0175) at 100°C. The total resistivity is just

Ptotal — Pt T Pj

Or incorporating the expressions for p; and p; from Equations 18.10 and 18.11, and the values of p(, a, and A

determined above, leads to

Protal = (P9 +aT) + Aq( - ¢)



= {158 x 10 8@-m) + [65 x 10-11 @-m)/°C](100°C) }

+{[1.18 x 106 (@-m)](0.0175)(1 - 0.0175) }

=425x 108 (Q-m)



18.15 Determine the electrical conductivity ofa Cu-Ni alloy that has a yield strength of125 MPa (18,000
psi). You will find Figure 7.16 helpful.

Solution

We are asked to determine the electrical conductivity of a Cu-Ni alloy that has a yield strength of 125 MPa.
From Figure 7.16b, the composition of an alloy having this tensile strength is about 20 wt% Ni. For this composition,
the resistivity is about 27 x 108 O-m (Figure 18.9). And since the conductivity is the reciprocal of the resistivity,
Equation 18.4, we have



18.16 Tin bronze has a composition of 92 wt% Cu and 8 wt% Sn, and consists of two phases at room
temperature: an o phase, which is copper containing a very small amount oftin in solid solution, and an & phase,

which consists of approximately 37 wt% Sn. Compute the room temperature conductivity of this alloy given the

following data:
Phase Electrical Resistivity Density (g/cm’)
(Q-m)
a 1.88x10° 8.94
€ 532x 107 8.25

Solution

This problem asks for us to compute the room-temperature conductivity of a two-phase Cu-Sn alloy which
composition is 92 wt% Cu-8 wt% Sn. It is first necessary for us to determine the volume fractions of the o and ¢
phases, after which the resistivity (and subsequently, the conductivity) may be calculated using Equation 18.12.
Weight fractions of the two phases are first calculated using the phase diagram information provided in the problem.

We may represent a portion of the phase diagram near room temperature as follows:

@ o
-
g
[-*]
=N
E o+ €
£
Room temperature =
A A
T wt% Sn
C (‘0 Ce
) C) 37)
Applying the lever rule to this situation
C.-C -
W, =& 0 3778 g
C.—-Cy 37-0
wo-C0=C 370y

8 C-C 37-0



We must now convert these mass fractions into volume fractions using the phase densities given in the problem

statement. (Note: in the following expressions, density is represented by p' in order to avoid confusion with
resistivity which is designated by p.) Utilization of Equations 9.6a and 9.6b leads to

0.784
_ 8.94 g/cm?
0.784 0.216
+
8.94 g/em3 8.25 g/em?

=0.770

0.216
_ 8.25 g/em’
0.784 0.216
+
8.94 g/em?3 8.25 g/em?

=0.230

Now, using Equation 18.12

P=PeVe t PV
=(1.88 x 108 Q-m)(0.770) + (5.32 x 1077 Q- m)(0.230)

=1368x 107/ Q-m



Finally, for the conductivity (Equation 18.4)

L ! =731 x 10° (Q-m)!
p 1368 x1077Q-m

oc =



18.17 A cylindrical metal wire 2 mm (0.08 in.) in diameter is required to carry a current of 10 A with a
minimum of 0.03 V drop per foot (300 mm) ofwire. Which ofthe metals and alloys listed in Table 18.1 are possible

candidates?
Solution

We are asked to select which of several metals may be used for a 2 mm diameter wire to carry 10 A, and have
a voltage drop less than 0.03 V per foot (300 mm). Using Equations 18.3 and 18.4, let us determine the minimum
conductivity required, and then select from Table 18.1, those metals that have conductivities greater than this value.

Combining Equations 18.3 and 18.4, the minimum conductivity is just

Il il
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(10 A)(300 x 1073 m)
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(0.03 V) (n)[zl;)mJ
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Thus, from Table 18.1, only aluminum, gold, copper, and silver are candidates.



Intrinsic Semiconduction

18.18 (a) Using the data presented in Figure 18.16, determine the number of free electrons per atom for
intrinsic germanium and silicon at roomtemperature (298 K). The densities for Ge and Si are 5.32 and 2.33 g/cnt’,
respectively.

(b) Now explain the difference in these free-electron-per-atom values.
Solution

(a) For this part of the problem, we first read, from Figure 18.16, the number of free electrons (i.e., the
intrinsic carrier concentration) at room temperature (298 K). These values are ny(Ge) =5 x 1012 m3 and n;(Si) =7 x
1016 3,

Now, the number of atoms per cubic meter for Ge and Si (NG, and Ng;, respectively) may be determined

using Equation 4.2 which involves the densities (pé}e and péi) and atomic weights (Ag, and Ag;). (Note: here we

use p' to represent density in order to avoid confusion with resistivity, which is designated by p. Also, the atomic
weights for Ge and Si, 72.64 and 28.09 g/mol, respectively, are found inside the front cover.) Therefore,

N p'
— " AFGe
NG =2

A

_ (6.022 x 1023 atoms/mol)(5.32 g/em?)(106 cm3/m?)
72.64 g/mol

=441 x 10?8 atoms/m>
Similarly, for Si

N p'.
— AFSi
No. = —82 920

A

_ (6.022 x 1023 atoms/mol)(2.33 g/cm3)(106 cm3/m?)
28.09 g/mol

=500 x 10?8 atoms/m>

Finally, the ratio of the number of free electrons per atomis calculated by dividing n; by N. For Ge



n;(Ge) _ 5 x 1019 electrons/m?3
Nge 441 x 1028 atoms/m?>

1.13 x 107 electron/atom

And, for Si

ni(si) _ 7 x 1016 electrons/m?3
Ngi  5.00 x 1028 atoms/m?

=1.40 x 10712 electron/atom

(b) The difference is due to the magnitudes of the band gap energies (Table 18.3). The band gap energy at
room temperature for Si (1.11 eV) is larger than for Ge (0.67 eV), and, consequently, the probability of excitation across

the band gap for a valence electron is much smaller for Si.



18.19 For intrinsic semiconductors, the intrinsic carrier concentration n; depends on temperature as

follows:

B 18.35
n; oc exp| ——=— .
i Xp KT ( a)
or taking natural logarithms,
E,
Inn; c——= (18.35b)
2kT

Thus, a plot of In n; versus 1/T (K)™' should be linear and yield a slope of —~E,/2k. Using this information and the
data presented in Figure 18.16, determine the band gap energies for silicon and germanium, and compare these

values with those given in Table 18.3.

Solution

This problem asks that we make plots of In n; versus reciprocal temperature for both Si and Ge, using the

data presented in Figure 18.16, and then determine the band gap energy for each material realizing that the slope of
the resulting line is equal to — Eg/Zk.

Below is shown such a plot for Si.

Inn. (m"3)

10
0.000 0.002 0.004 0.006 0.008 0.010

1 -
x!

)

Temperature



The slope of the line is equal to

Alnn. In — In

Slope = o il Wi
[1} 1 1
Al — —_— -

T

Let us take 1/T; = 0.001 and 1/T," 4!~ “SWHUFRUHVSRQGQ ‘@' values are In 1; = 54.80 and In n, = 16.00.

Incorporating these values into the above expression leads to a slope of

Slope = 480 = 1600 _
0.001 — 0.007

This slope leads to an Eg value of
Eg =— 2k (Slope)
=-2(8.62 x 1075 eV/K)(— 6467 ) = 1.115 eV

The value cited in Table 18.3is 1.11 eV.

Now for Ge, an analogous plot is shown below.
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We calculate the slope and band gap energy values in the manner outlined above. Let us take 1/T; =0.001 and I/T,
= 0.1 "“\WHUFRUFVSRQAQ! '@ values are In n; =55.56 and In n, = 14.80. Incorporating these values into the

above expression leads to a slope of

Slope = 5556 1480 _ 0
0.001 — 0.011

This slope leads to an Eg value of
Eg =—2k (Slope)

=-2(8.62 x 107 eV/K)(—-4076 ) = 0.70 eV

This value is in good agreement with the 0.67 eV cited in Table 18.3.



18.20 Briefly explain the presence ofthe factor 2 in the denominator of Equation 18.35a.

Solution

The factor 2 in Equation 18.35a takes into account the creation of two charge carriers (an electron and a
hole) for each valence-band-to-conduction-band intrinsic excitation; both charge carriers may participate in the

conduction process.



1821 At room temperature the electrical conductivity of PbTe is 500 (Q-m) ', whereas the electron and
hole mobilities are 0.16 and 0.075 m*/V-s, respectively. Compute the intrinsic carrier concentration for PbTe at

roomtemperature.
Solution

In this problem we are asked to compute the intrinsic carrier concentration for PbTe at room temperature.

Since the conductivity and both electron and hole mobilities are provided in the problem statement, all we need do is
solve forn and p (ie., n;) using Equation 18.15. Thus,

-5
T el + 1)
_ 500 (Q-m)~!

(1.602 x 10712 C)(0.16 + 0.075) m?/V-s

=133 x 1022 m3



18.22 Is it possible for compound semiconductors to exhibit intrinsic behavior? Explain your answer.

Solution

Yes, compound semiconductors can exhibit intrinsic behavior. They will be intrinsic even though they are
composed of two different elements as long as the electrical behavior is not influenced by the presence of other

elements.



18.23 For each of the following pairs of semiconductors, decide which will have the smaller band gap
energy, E, and then cite the reason for your choice. (a) ZnS and CdSe, (b) Si and C (diamond), (¢) Al,O; and ZnTe,
(d) InSb and ZnSe, and (e) GaAs and AIP.

Solution

This problem calls for us to decide for each of several pairs of semiconductors, which will have the smaller
band gap energy and then cite a reason for the choice.

(a) Cadmium selenide will have a smaller band gap energy than zinc sulfide. Both are II-VI compounds, and
Cd and Se are both lower vertically in the periodic table (Figure 2.6) than Zn and S. In moving from top to bottom
down the periodic table, Eg decreases.

(b) Silicon will have a smaller band gap energy than diamond since Siis lower in column IVA ofthe periodic
table than is C.

(c) Zinc telluride will have a smaller band gap energy that aluminum oxide. There is a greater disparity
between the electronegativities for aluminum and oxygen [1.5 versus 3.5 (Figure 2.7)] than for zinc and tellurium (1.6
and 2.1). For binary compounds, the larger the difference between the electronegativities of the elements, the greater
the band gap energy.

(d) Indium antimonide will have a smaller band gap energy than zinc selenide. These materials are I1I-V and
II-VI compounds, respectively; Thus, in the periodic table, In and Sb are closer together horizontally than are Zn and
Se. Furthermore, both In and Sb reside below Zn and Se in the periodic table.

(e) Gallium arsenide will have a smaller band gap energy than aluminum phosphide. Both are MI-V

compounds, and Ga and As are both lower vertically in the periodic table than Aland P.



Extrinsic Semiconduction

18.24 Define the following terms as they pertain to semiconducting materials: intrinsic, extrinsic,

compound, elemental. Now provide an example ofeach.

Solution

These semiconductor terms are defined in the Glossary. Examples are as follows: intrinsic--high purity
(undoped) Si, GaAs, CdS, etc.; extrinsic--P-doped Ge, B-doped Si, S-doped GaP, etc.; compound--GaAs, InP, CdS,

etc.; elemental--Ge and Si.



18.25 An n-type semiconductor is known to have an electron concentration of3 x 10" m™. Ifthe electron

drift velocity is 100 nvs in an electric field of500 V/m, calculate the conductivity ofthis material.
Solution

The conductivity of this material may be computed using Equation 18.16. But before this is possible, it is

necessary to calculate the value of p, from Equation 18.7. Thus, the electron mobility is equal to

= % =0.20 m>/V—-s
Thus, from Equation 18.16, the conductivity is
o =nlelu,

=(3x 10" m3)(1.602 x 10712C)(0.20 m?/V—s)

=0.096 (Q-m)!



18.26 (a) In your own words, explain how donor impurities in semiconductors give rise to free electrons in
numbers in excess of those generated by valence band—conduction band excitations. (b) Also explain how
acceptor impurities give rise to holes in numbers in excess of those generated by valence band—conduction band

excitations.

The explanations called for are found in Section 18.11.



18.27 (a) Explain why no hole is generated by the electron excitation involving a donor impurity atom.

(b) Explain why no free electron is generated by the electron excitation involving an acceptor impurity atom.

Solution

(a) No hole is generated by an electron excitation involving a donor impurity atom because the excitation
comes from a level within the band gap, and thus, no missing electron is created within the normally filled valence
band.

(b) No free electron is generated by an electron excitation involving an acceptor impurity atombecause the
electron is excited from the valence band into the impurity level within the band gap; no free electron is introduced

into the conduction band.



18.28 Will each of the following elements act as a donor or an acceptor when added to the indicated

semiconducting material? Assume that the impurity elements are substitutional.

Impurity Semiconductor

P Ge

S AlP

In CdTe

Al Si

Cd GaAs

Sb ZnSe

Solution

Phosphorus will act as a donor in Ge. Since it (P) is from group VA of the periodic table (Figure 2.6), a P

atom has one more valence electron than a Ge atom.

Sulfur will act as a donor in AIP. Since S is from group VIA of the periodic table, it will substitute for P;
also, an S atomhas one more valence electron than a P atom.

Indium will act as a donor in CdTe. Since In is from group IIIA of the periodic table, it will substitute for Cd;
furthermore, an In atomhas one more valence electron than a Cd atom.

Aluminum will act as an acceptor in Si. Since it (Al) is from group IIIA of the periodic table (Figure 2.6), an
Alatomhas one less valence electron than a Siatom.

Cadmium will act as an acceptor in GaAs. Since Cd is from group IIB of the periodic table, it will substitute

for Ga; furthermore, a Cd atomhas one less valence electron than a Ga atom.

Antimony will act as an acceptor in ZnSe. Since Sb is from group VA of'the periodic table, it will substitute

for Se; and, an Sb atomhas one less valence electron than an Se atom.



1829 (a) The room-temperature electrical conductivity ofa silicon specimen is 5.93 x 10~ (Q-m)". The
hole concentration is known to be 7.0 x 10" m”. Using the electron and hole mobilities for silicon in Table 18.3,
compute the electron concentration. (b) On the basis of the result in part (a), is the specimen intrinsic, n-type

extrinsic, or p-type extrinsic? Why?
Solution

(a) In this problem, for a Sispecimen, we are given values for p (7.0 x 1017 m‘3) and 6 [5.93 x 1073 (Q-m)
1], while values for p, and p, (0.05 and 0.14 m2/V-s, respectively) are found in Table 18.3. In order to solve for n we

must use Equation 18.13, which, after rearrangement, leads to

_ 0~ plefpy
le|p,

_ 593 x 103 @Q@-m)! - (7.0 x 1017 m)(1.602 x 10712 C)(0.05 m?/V-5s)
(1.602 x 10719C)(0.14 m?/V-5)

=144 x 1010 3

(b) This material is p-type extrinsic since p (7.0 x 1017 m'3) is greater than n (1.4 x 1016 m'3).



1830 Germanium to which 5 x 10> m” Sb atoms have been added is an extrinsic semiconductor at room
temperature, and virtually all the Sb atoms may be thought ofas being ionized (i.e., one charge carrier exists for
each Sb atom). (a) Is this material n-type or p-type? (b) Calculate the electrical conductivity of this material,

assuming electron and hole mobilities of0.1 and 0.05 m’/V-s, respectively.

Solution

(a) (@) This germanium material to which has been added 5 x 1022 m3 Sb atoms is n-type since Sb is a
donorin Ge. (Antimony is from group VA of the periodic table--Ge is from group IVA.)
(b) Since this material is n-type extrinsic, Equation 18.16 is valid. Furthermore, each Sb will donate a single

electron, or the electron concentration is equal to the Sb concentration since all of the Sb atoms are ionized at room

temperature; thatis n=>5 x 1022 113, and, as given in the problem statement, Me= 0.1 m?/V-s. Thus
o =nle|p,
= (5 x 1022 m3)(1.602 x 10°1? C)(0.1 m?/V-s)

=800 (Q-m)’!



18.31 The following electrical characteristics have been determined for both intrinsic and p-type extrinsic

indiumphosphide (InP) at roomtemperature:

6 (Q-m)’ n(m”) p (m”)
Intrinsic 25x%10° 3.0x 10" 3.0x 10"
Extrinsic (n-type) 36% 107 45x% 10" 2.0x 10"

Calculate electron and hole mobilities.

Solution

In order to solve for the electron and hole mobilities for InP, we must write conductivity expressions for the

two materials, of the form of Equation 18.13—i.e.,
o =nle|p, + ple|py

For the intrinsic material

25 x 100 @Q-m)"! = (3.0 x 1083 m3)(1.602 x 1017 C) p,

+ (3.0 x 1083 m3)(1.602 x 10-1° C) py,

which reduces to

052 =pe + py

Whereas, for the extrinsic InP

36 x 105 (@Q-m)! = (45 x 10" m3)(1.602 x 10717 C) p,

+(20 x 102 m3)(1.602 x 1019 C) p;,

which may be simplified to

1124 = 225u, +

Thus, we have two independent expressions with two unknown mobilities. Upon solving these equations
simultaneously, we get pu, = 0.50 m%/V-s and wy, = 0.02 mZ/V-s.



The Temperature Dependence of Carrier Concentration
18.32 Calculate the conductivity ofintrinsic silicon at 100°C.

Solution

In order to estimate the electrical conductivity of intrinsic silicon at 100°C, we must employ Equation 18.15.

However, before this is possible, it is necessary to determine values for ny, u,, and py,. According to Figure 18.16, at
100°C (373 K), n; = 2 x 10'8 m™3, whereas from the "<102 m™3" curves of Figures 18.19a and 18.19b, at 100°C (373 K),

e = 0.09 m%/V-s and wy, = 0.032 m%/V-s (realizing that the mobility axes of these two plot are scaled logarithmically).

Thus, the conductivity at 100°C is

o =nlel(u, + pp)
o = (2 x 101 m™3)(1.602 x 10719 €)(0.09 m%/V-s + 0.032 m?/V—s)

= 0.039 (Q-m)!



1833 At temperatures near room temperature, the temperature dependence of the conductivity for

intrinsic germaniumis found to equal

E
c=CT3/2 exp(—ﬁ} (18.36)

where C is a temperature-independent constant and T is in Kelvins. Using Equation 18.36, calculate the intrinsic

electrical conductivity of germaniumat 150°C.
Solution

It first becomes necessary to solve for C in Equation 18.36 using the room-temperature (298 K) conductivity

[2.2 (Q-m)'l] (Table 18.3). This is accomplished by taking natural logarithms of both sides of Equation 18.36 as

E
Inoc =1nC—§1nT— &
2 2kT

and after rearranging and substitution of values for Eg (0.67 eV, Table 18.3), and the room-temperature conductivity,

we get

E
mnC-lno + SInT + —&
2 2kT

0.67 eV
(2)(8.62 x 107 eV/K)(298 K)

=In(22) + %m (298) +

=22.38

Now, again using Equation 18.36, we are able to compute the conductivity at 423 K (150°C)

E
Inc = lnC—glnT——g
2 2kT

0.67 eV
(2)(8.62 x 107 eV/K)(423 K)

=2238 - gln (423K) -

=4.12



which leads to

o=et12=616Qmyl.



18.34 Using Equation 18.36 and the results of Problem 18.33, determine the temperature at which the

electrical conductivity ofintrinsic germaniumis 22.8 (Q-m) .

Solution

This problem asks that we determine the temperature at which the electrical conductivity of intrinsic Ge is

22.8 (Q-m)'l, using Equation 18.36 and the results of Problem 18.33. First of all, taking logarithms of Equation 18.36

E
Inoc = lnC—ElnT——g
2 2kT

And, from Problem 18.33 the value of In C was determined to be 22.38. Using this and o =22.8 (Q-m)'l, the above
equation takes the form

In22.8 = 2238 — éln T - 0.67 eV
2 (2)(8.62 x 1075 eV/K)(T)

In order to solve for T from the above expression it is necessary to use an equation solver. For some solvers, the

following set of instructions may be used:

In(22.8) = 22.38 —1.5*In(T) — 0.67/(2*8.62* 10"-5*T)

The resulting solution is T" ' 11{Z KIFK YDOXHIVWWHWP SHDWUHIQ:  KIVFRUWHVSRQGVIR T(°C) = 375 — 273 = 102°C.



18.35 Estimate the temperature at which GaAs has an electrical conductivity of 3.7 3 10?* (V-m)?'

assuming the temperature dependence for 6 of Equation 18.36. The data shown in Table 18.3 might prove helpful.

Solution

This problem asks that we estimate the temperature at which GaAs has an electrical conductivity of 3.7 x 10
3 (Q-m)'1 assuming that the conductivity has a temperature dependence as shown in Equation 18.36. Fromthe room
temperature (298 K) conductivity [10'6 (Q-m)'l] and band gap energy (1.42 eV) of Table 18.3 we determine the value

of C (Equation 18.36) by taking natural logarithms of both sides of the equation, and after rearrangement as follows:

E
InC=Ino -i-élnT-i-—g
2kT

142 eV
(2)(8.62 x 1075 eV/K)(298 K)

= In [107¢ @-m)~'] + gln (298 K) +

=22.37

Now we substitute this value into Equation 18.36 in order to determine the value of T for which 6=3.7 x 1073 (Q-my

1, thus

E
mo=nC —2InT-_&
2 2KT

142 eV
(2)(8.62 x 107 eV/K)(T)

In [3.7 x 1073 (Q-m)-1]= 237 - glnT -

This equation may be solved for T using an equation solver. For some solvers, the following set of instructions may

be used:
In(3.7¥10"-3) =22.37 — 1.5*In(T) — 1.42/(2*8.62* 10"-5*T)

The resulting solution is T" Y SIVYDOXHIVAKHWP SHDXUHIQ! Z KIFK FRUFVSRQGVAR T(°C) = 437 K — 273 = 164°C.



18.36 Compare the temperature dependence ofthe conductivity for metals and intrinsic semiconductors.

Briefly explain the difference in behavior.

Solution

For metals, the temperature dependence is described by Equation 18.10 (and converting from resistivity to

conductivity using Equation 18.4), as

N
po+ aT

That is, the electrical conductivity decreases with increasing temperature.

Alternatively, from Equation 18.8, the conductivity of metals is equal to
c = nlelp,

As the temperature rises, n will remain virtually constant, whereas the mobility (u,) will decrease, because the thermal

scattering of free electrons will become more efficient. Since |e| is independent of temperature, the net result will be

diminishment in the magnitude of c.

For intrinsic semiconductors, the temperature-dependence of conductivity is just the opposite of that for
metals—i.e, conductivity increases with rising temperature. One explanation is as follows: Equation 18.15 describes

the conductivity; i.e.,

o =nlel(u, + ny) = plellp, + 1)
=nlel(u, + np)

Both n and p increase dramatically with rising temperature (Figure 18.16), since more thermal energy becomes
available for valence band-conduction band electron excitations. The magnitudes of p, and py will diminish

somewhat with increasing temperature (per the upper curves of Figures 18.19a and 18.19b), as a consequence of the
thermal scattering of electrons and holes. However, this reduction of pi, and p;, will be overwhelmed by the increase
in n and p, with the net result is that o increases with temperature.

An alternative explanation is as follows: for an intrinsic semiconductor the temperature dependence is
represented by an equation of the form of Equation 18.36. This expression contains two terms that involve

temperature—a preexponential one (in this case T '3/2) and the other in the exponential. With rising temperature the

preexponential term decreases, while the exp (—Eg/ZkT) parameter increases. With regard to relative magnitudes, the



exponential term increases much more rapidly than the preexponential one, such that the electrical conductivity of an

intrinsic semiconductor increases with rising temperature.



Factors That Affect Carrier Mobility

18.37 Calculate the room-temperature electrical conductivity ofsilicon that has been doped with 5 x 10%

-3
m- ofboron atoms.

Solution

This problems asks that we determine the room-temperature electrical conductivity of silicon that has been
doped with 5 x 1022 m3 of boron atoms. Inasmuch as B is a group IIIA element in the periodic table (Figure 2.6) it
acts as an acceptor in silicon. Thus, this material is p-type extrinsic, and it is necessary to use Equation 18.17, with p
=5 x 1022 mr3 since at room temperature all of the B acceptor impurities are ionized. The hole mobility, from Figure

18.18 at an impurity concentration of 5 x 1022 m3 ,1s 0.028 m2/V-s. Therefore, the conductivity is equal to

o=plelp, = (5 x 1022 m3)(1.602 x 10719 €)(0.028 m? /V —s) = 224 (Q—m)~!



18.38 Calculate the room-temperature electrical conductivity ofsilicon that has been doped with 2 x 10

m ofarsenic atoms.

Solution

Here we are asked to calculate the room-temperature electrical conductivity of silicon that has been doped
with 2 x 1023 m3 ofarsenic atoms. Inasmuch as As is a group VA element in the periodic table (Figure 2.6) it acts as
a donor in silicon. Thus, this material is n-type extrinsic, and it is necessary to use Equation 18.16, with n =2 x 1023
m3 since at room temperature all of the As donor impurities are ionized. The electron mobility, from Figure 18.18 at

an impurity concentration of 2 x 1023 m'3, is 0.05 m/V-s. Therefore, the conductivity is equal to

c=nle|p, = (2 x 1083 m3)(1.602 x 10712 €)(0.05 m? /V -s) = 1600 (€2~ m)~!



1839 Estimate the electrical conductivity, at 125°C, of silicon that has been doped with 10 m” of

aluminum atoms.

Solution
In this problem we are to estimate the electrical conductivity, at 125°C, of silicon that has been doped with
1023 m3 of aluminum atoms. Inasmuch as Alis a group IIIA element in the periodic table (Figure 2.6) it acts as an
acceptor in silicon. Thus, this material is p-WSHH WQVFDQGIWMYIQHFHWIL "W XVHY TXDRQ-4l p in this

expression is 1023 m3 since at 125°C all of the Al acceptor impurities are ionized. The hole mobility is determined

using Figure 18.19b. From the 1023 m3 impurity concentration curve and at 125°C (398 K), p, = 0.017 m2/V-s.

Therefore, the conductivity is equal to

6 =plelp, = (1083 m3)(1.602 x 10719 €)(0.017 m? /V-5) =272 (Q-m)~!



18.40 Estimate the electrical conductivity, at 85°C, of silicon that has been doped with 10 m” of

phosphorus atoms.

Solution

In this problem we are to estimate the electrical conductivity, at 85°C, of silicon that has been doped with
1020 3 of phosphorus atoms. Inasmuch as P is a group VA element in the periodic table (Figure 2.6) it acts as a

donor in silicon. Thus, this material is n-WSHH WQVEDQGIVVOQHFHWIY SR XVH( TXDWRQdIF U in this expression

is 1020 m3 since at 85°C all of the P donor impurities are ionized. The electron mobility is determined using Figure

18.19a. From the <1020 m impurity concentration curve and at 85°C (358 K,) p, = 0.1 m2/V-s. Therefore, the

conductivity is equal to

c=nle|p, = (1022m3)(1.602 x 10717 C)(0.1 m? /V-s)=1.6 (Q—m)~!



The Hall Effect

18.41 Some hypothetical metal is known to have an electrical resistivity of4 x 10 (Q-m). Through a
\SHFIP HQ RI AKLVP HBOAKDWLV ./ P P AKIFN {VSDWHG D FXUHWRI 77/ §  ZKHY D P DI QHWF {TH® RI /€ / A V°
simultaneously imposed in a direction perpendicular to that of the current, a Hall voltage of -1.26 x 107 Vis

measured. Compute (a) the electron mobility for this metal, and (b) the number offree electrons per cubic meter.

Solution

(a) This portion of the problem calls for us to determine the electron mobility for some hypothetical metal
using the Hall effect. This metal has an electrical resistivity of 4 x 108 (€Q2-m), while the specimen thickness is 25 mm,
I, =30 A and BZL U NV -SXQGHAKHVHFIFXP VIRQFHV'DH DOSYROEY HRI =-1.26 x 107 Vis measured. It is first

necessary to convert resistivity to conductivity (Equation 18.4). Thus

L ! =25 x 107 (Q-m)!
p 4 x 1078 Q-m)

o=

7 KHHDPFWRQ'P REIQW P D EHGHMP IQHGXMQY f TXDRQY4E "DOGXSRQIQFRISRUMRQRI  TXDWRQY-4iZ HKDYH

Mo = |Rylo

0—1.26 x 1077 V|)25 x 103 m)[2.5 x 107 @-m)™!]
i (30 A)(0.75 tesla)

= 0.0035 m%/V-s

(b) Now we are to calculate the number of free electrons per cubic meter. From Equation 18.8 we have

o
le|pe

n =

_ 25x107 (Q-m)~!
(1.602 x 10712 €)(0.0035 m?/V-s)

= 446 x 1028 m3



18.42 Some metal alloy is known to have electrical conductivity and electron mobility values of 1.5 x 10’
(Q-m)™" and 0.0020 m’/V-s, respectively. Through a specimen ofthis alloy that is 35 mm thick is passed a current of
45 A. What magnetic field would need to be imposed to yield a Hall voltage of-1.0 x 107 V?

Solution

In this problem we are asked to determine the magnetic field required to produce a Hall voltage of -1.0 x 10”7
V, given that 6= 1.5 x 107 (Q-m)’}, u, = 0.0020 m?/V-s, I =45 A, and d = 35 mm. Combining Equations 18.18 and
18.20b, and after solving for B, we get

G—I.O x 10—7\/|)[1.5 x 107 @-m)1](35 x 107 m)
- (45 A)(0.0020 m?/V-s)

=0.58 tesla



Semiconducting Devices

18.43 Briefly describe electron and hole motions in a p—n junction for forward and reverse biases; then

explain how these lead to rectification.

The explanations called for are found in Section 18.15.



18.44 How is the energy in the reaction described by Equation 18.21 dissipated?

Solution

The energy generated by the electron-hole annihilation reaction, Equation 18.21, is dissipated as heat.



18.45 What are the two functions that a transistor may performin an electronic circuit?

Solution

In an electronic circuit, a transistor may be used to (1) amplify an electrical signal, and (2) act as a switching

device in computers.



18.46 Cite the differences in operation and application for junction transistors and MOSFETs.

The differences in operation and application for junction transistors and MOSFETSs are described in Section

18.15.



Conduction in Ionic M aterials

18.47 We noted in Section 12.5 (Figure 12.22) that in FeO (wiistite), the iron ions can exist in both Fe*"
and Fe’* states. The number of each ofthese ion types depends on temperature and the ambient oxygen pressure.
Furthermore, we also noted that in order to retain electroneutrality, one Fe’* vacancy will be created for every two
Fe’" ions that are formed; consequently, in order to reflect the existence ofthese vacancies the formula for wiistite
is often represented as Fe(; _,) O where x is some small fraction less than unity.

In this nonstoichiometric Fe(; -,y O material, conduction is electronic, and, in fact, it behaves as a p-type
semiconductor. That is, the Fe'" ions act as electron acceptors, and it is relatively easy to excite an electron from
the valence band into an Fe’" acceptor state, with the formation ofa hole. Determine the electrical conductivity of
a specimen ofwiistite that has a hole mobility of 1.0 x 10~ m’/V-s and for which the value ofx is 0.060. Assume that
the acceptor states are saturated (i.e., one hole exists for every Fe’* ion). Wiistite has the sodium chloride crystal

structure with a unit cell edge length 0f0.437 nm.

Solution

We are asked in this problem to determine the electrical conductivity for the nonstoichiometric Fe(l ) X)O,

given x = 0.060 and that the hole mobility is 1.0 x 10 m%/V-s. 1t is first necessary to compute the number of
vacancies per cubic meter for this material. For this determination let us use as our basis 10 unit cells. For the sodium
chloride crystal structure there are four cations and four anions per unit cell. Thus, in ten unit cells of FeO there will
normally be forty 02_ and forty Fe2" ions. However, when x = 0.06, (0.06)(40) = 2.4 of the Fe2" sites will be vacant.
(Furthermore, there will be 4.8 Fe3" ions in these ten unit cells inasmuch as two Fe3™ ions are created for every
vacancy). Therefore, each unit cell will, on the average contain 0.24 vacancies. Now, the number of vacancies per
cubic meter is just the number of vacancies per unit cell divided by the unit cell volume; this volume is just the unit

celledge length (0.437 nm) cubed. Thus

# vacancies _ 0.24 vacancies/unit cell

m3 (0.437 x 107 m)3

= 2.88 x 1027 vacancies/m3

Inasmuch as it is assumed that the vacancies are saturated, the number of holes (p) is also 2.88 x 1027 mi3. Tt is now

possible, using Equation 18.17, to compute the electrical conductivity of this material as

o = plelpy

= (2.88 x 1027 m3)(1.602 x 10719 C)(1.0 x 10 m?/V-s) = 4613 Q-m)!



18.48 At temperatures between 775°C (1048 K) and 1100°C (1373 K), the activation energy and
preexponential for the diffusion coefficient of Fe*" in FeO are 102,000 J/mol and 7.3 x 10 m’/s, respectively.
Compute the mobility for an Fe*" ion at 1000°C (1273 K).

Solution

For this problem, we are given, for FeO, the activation energy (102,000 J/mol) and preexponential (7.3 x 108

m?/s) for the diffusion coefficient of Fe2* and are asked to compute the mobility for a Fe2" ion at 1273 K. The
mobility, pp2+#P D "EHFRP SXWG-XMQ) { TXDIRQ' T4 -"KRZ HYHIFWIV-H SUWIRQDOR QFOGHY - WH' GIIXMRQ"

coefficient D p 2+, which is determined using Equation 5.8 as

Q
DFe2+ =Dy exp (_R_dT

= (73 x 10°8 m2/s) exp{— 102,000 J/mol }

(8.31 J/mol-K)(1273 K)

=474 x 10712 m?/s

Now solving for up 2+ yields

_ nl*‘ez*'eDFe2+
MF62+ - kT

_ ()(1.602 x 1071 C/atom)(4.74 x 107'2 m? /s)
(1.38 x 10723 J/atom- K) (1273 K)

=864 x 10711 m2/v-s

(Note: the value of np 2+ is two, inasmuch as two electrons are involved in the ionization of Fe to Fe2™)



Capacitance

18.49 A parallel-plate capacitor using a dielectric material having an € of2.5 has a plate spacing of |
mm (0.04 in.). If another material having a dielectric constant of 4.0 is used and the capacitance is to be

unchanged, what must be the new spacing between the plates?

Solution

We want to compute the plate spacing of a parallel-plate capacitor as the dielectric constant is increased

form 2.5 to 4.0, while maintaining the capacitance constant. Combining Equations 18.26 and 18.27 yields

Now, let us use the subscripts 1 and 2 to denote the initial and final states, respectively. Since C; =C,, then

A A

1800 _ 2%

L L

And, solving forl,

_ €l _ (4.0)(1 mm) _
€r1 2.5

1.6 mm




18.50 A parallel-plate capacitor with dimensions of 100 mm by 25 mm and a plate separation of 3 mm
must have a minimum capacitance of 38 pF (3.8 x 10™"" F) when an ac potential of500 Vis applied at a frequency

of 1 MHz. Which ofthose materials listed in Table 18.5 are possible candidates? Why?

Solution

This problem asks for us to ascertain which of the materials listed in Table 18.5 are candidates for a parallel-
plate capacitor that has dimensions of 100 mm by 25 mm, a plate separation of 3 mm so as to have a minimum

capacitance of 3.8 x 10°11 F, when an ac potential of 500 V is applied at 1 MHz. Upon combining Equations 18.26 and

18.27 and solving for the dielectric constant & we get

€ 1C

8 =
' g  gA

_ (3x103m)(3.8 x 1071F)
(8.85 x 10712F /m)(100 x 1073 m)(25 x 103 m)

=5.15

Thus, the minimum value of & to achieve the desired capacitance is 5.15 at 1 MHz. Of those materials listed in the

table, titanate ceramics, mica, steatite, soda-lime glass, and porcelain are candidates.



18.51 Consider a parallel-plate capacitor having an area of 2500 mm’ and a plate separation of 2 mm,
and with a material ofdielectric constant 4.0 positioned between the plates. (a) What is the capacitance of this

capacitor? (b) Compute the electric field that must be applied for 8.0 x 107 C to be stored on each plate.
Solution
In this problem we are given, for a parallel-plate capacitor, its area (2500 rnmz), the plate separation (2 mm),
and that a material having an ¢_0f4.0 is positioned between the plates.

(a) We are first asked to compute the capacitance. Combining Equations 18.26 and 18.27, and solving for C
yields

eA_ ggA
1 1

C =

_ (4.0)(8.85 x 10712 F /m)(2500 mm?)(1 m?/10% mm?)
2 x 1073m

=443x 1011 F=443 pF

(b) Now we are asked to compute the electric field that must be applied in order that 8 x 10" C be stored on

each plate. First we need to solve for Vin Equation 18.24 as

V=== ————=18IV

Q 8x107°C
C 443 x 10711F

The electric field E may QRZ EHGHMP IQHGXMQ { TXDIRQT-4 WXV

= —" " =91 x 10* V/m

\Ys 181 V
E=—
1 2 x 103 m



18.52 In your own words, explain the mechanism by which charge storing capacity is increased by the

insertion ofa dielectric material within the plates ofa capacitor.

This explanation is found in Section 18.19.



Field Vectors and Polarization

Types of Polarization

18.53 For NaCl, the ionic radii for Na” and C1 ions are 0.102 and 0.181 nm, respectively. Ifan externally
applied electric field produces a 5% expansion of the lattice, compute the dipole moment for each Na*~ClI  pair.

Assume that this material is completely unpolarized in the absence ofan electric field.

Solution

Shown below are the relative positions of Na™ and CI” ions, without and with an electric field present.

m f
=
=]

d+ Ad
E>0
Now,
d = ot + rCl' = 0.102 nm + 0.181nm = 0.283 nm
and

Ad = 005 d = (0.05)(0.283 nm) = 0.0142 nm = 142 x 10 ''m

From Equation 18.28, the dipole moment, p, is just
p = qAd
= (1.602 x 10°1° C)(1.42 x 10-'1'm)

=226x 1039 C:m



18.54 The polarization P ofa dielectric material positioned within a parallel-plate capacitor is to be 1.0
x 10" C/nt’.

(a) What must be the dielectric constant ifan electric field of 5 x 10* V/mis applied?

(b) What will be the dielectric displacement D?

Solution

(a) In order to solve for the dielectric constant in this problem, we must employ Equation 18.32, in which the

polarization and the electric field are given. Solving for ¢, from this expression gives

_ 1.0 x 1076 C/m? i
(8.85 x 10712 F/m)(5 x 10* V/m)

=3.26

(b) The dielectric displacement may be determined using Equation 18.31, as

D:80E+P

= (885 x 10712 F/m)(5 x 10* V/m) + 1.0 x 107 C/m?

=1.44x 100 C/m?



18.55 Acharge of3.5 x 107" C is to be stored on each plate ofa parallel-plate capacitor having an area of
160 mm? (0.25 in.%) and a plate separation of3.5 mm(0.14 in.).

(a) What voltage is required if a material having a dielectric constant of 5.0 is positioned within the
plates?

(b) What voltage would be required ifa vacuum were used?

(c) What are the capacitances for parts (a) and (b)?

(d) Compute the dielectric displacement for part (a).

(e) Compute the polarization for part (a).
Solution
(a) We want to solve for the voltage when Q = 3.5 x 10011 ¢, A =160 mn?, 1 = 3.5 mm, and g =5.0.

Combining Equations 18.24, 18.26, and 18.27 yields

_ (3.5x 1071 C)(3.5%x 102 m)
(5.0)(8.85 x 10712F/m)(160 mm?)(1 m? /10® mm?)

=173V
(b) For this same capacitor, if a vacuumis used
v Q
€A

(3.5x 10711 C)(3.5 x 103 m)
(8.85 x 10712F /m)(160 x 107 m?)




=865V

(c) The capacitance for part (a) is just

-11
C = 9: M: 20 x 10-12F
v 173V
While for part (b)
-11
c=2-33)10 € _yp,100F
A% 86.5V

(d) The dielectric displacement may be computed by combining Equations 18.31, 18.32 and 18.6, as

soer

D =¢g)E +P = g)E+ ¢gy(e, —DE =gy E= 0

And incorporating values for ¢. and I provided in the problem statement, as well as the value of V computed in part

@

_ (885x107'2F/m)(5.0)17.3 V)

D
3.5% 103 m

=22x 1077 C/m?

(e) The polarization is determined using Equations 18.32 and 18.6 as

\Y%
P =gy, - DE = gy(&. - DT

_ (885 x107'2F/m) (5.0 - 1)(17.3 V)
3.5x 103 m

=1.75x 107 C/m?



18.56 (a) For each ofthe three types ofpolarization, briefly describe the mechanism by which dipoles are
induced and/or oriented by the action ofan applied electric field. (b) For solid lead titanate (PbTiO;), gaseous

neon, diamond, solid KCl, and liquid NH; what kind(s) ofpolarization is (are) possible? Why?

Solution

(a) For electronic polarization, the electric field causes a net displacement of the center of the negatively
charged electron cloud relative to the positive nucleus. With ionic polarization, the cations and anions are displaced
in opposite directions as a result of the application of an electric field. Orientation polarization is found in substances
that possess permanent dipole moments; these dipole moments become aligned in the direction of the electric field.

(b) Electronic, ionic, and orientation polarizations would be observed in lead titanate. The lead, titanium,
and oxygen would undoubtedly be largely ionic in character. Furthermore, orientation polarization is also possible
inasmuch as permanent dipole moments may be induced in the same manner as for BaTiO5 as shown in Figure 18.35.

Only electronic polarization is to be found in gaseous neon; being an inert gas, its atoms will not be ionized
nor possess permanent dipole moments.

Only electronic polarization is to be found in solid diamond; this material does not have molecules with
permanent dipole moments, nor is it an ionic material.

Both electronic and ionic polarizations will be found in solid KCl, since it is strongly ionic. In all probability,
no permanent dipole moments will be found in this material.

Both electronic and orientation polarizations are found in liquid NH;. The NH; molecules have permanent

dipole moments that are easily oriented in the liquid state.



18.57 (a) Compute the magnitude of the dipole moment associated with each unit cell of BaTiO;, as
illustrated in Figure 18.35.

(b) Compute the maximum polarization that is possible for this material.
Solution

(a) This portion of the problem asks that we compute the magnitude of the dipole moment associated with

each unit cell of BaTiO3, which is illustrated in Figure 18.35. The dipole moment p is defined by Equation 18.28 as p =
qd in which q is the magnitude of each dipole charge, and d is the distance of separation between the charges. Each
Ti*" ion has four units of charge associated with it, and thus q = (4)(1.602 x 1019 C)=6.41x 1019 c. Furthermore, d

is the distance the Ti*" ion has been displaced from the center of the unit cell, which is just 0.006 nm + 0.006 nm=

0.012 nm [Figure 18.35(b)]. Hence

p =qd = (6.41 x 1012 C)(0.012 x 10" m)
=7.69x 1039 C-m

(b) Now it becomes necessary to compute the maximum polarization that is possible for this material. The
maximum polarization will exist when the dipole moments of all unit cells are aligned in the same direction.
Furthermore, it is computed by dividing the above value of p by the volume of each unit cell, which is equal to the

product of three unit cell edge lengths, as shown in Figure 18.35. Thus

_ 7.69 x 1039 C—m
(0.403 x 107 m)(0.398 x 10~ m)(0.398 x 10~ m)

=0.121 C/m?



Frequency Dependence of the Dielectric Constant

18.58 The dielectric constant for a soda—lime glass measured at very high frequencies (on the order of
10" Hz) is approximately 2.3. What fraction of the dielectric constant at relatively low frequencies (1 MHz) is

attributed to ionic polarization? Neglect any orientation polarization contributions.

Solution

For this soda-lime glass, in order to compute the fraction of the dielectric constant at low frequencies that is

attributed to ionic polarization, we must determine the &. within this low-frequency regime; such is tabulated in Table

18.5, and at 1 MHz its value is 6.9. Thus, this fraction is just

g, (low) — &_(high)

g, (low)

fraction =

_69-23 o

6.9



Ferroelectricity

18.59 Briefly explain why the ferroelectric behavior of BaTiO; ceases above its ferroelectric Curie

temperature.

Solution

The ferroelectric behavior of BaTiO5 ceases above its ferroelectric Curie temperature because the unit cell

transforms fromtetragonal geometry to cubic; thus, the Ti*" is situated at the center of the cubic unit cell, there is no

charge separation, and no net dipole moment.



DESIGN PROBLEMS
Electrical Resistivity of Metals

18.D1 A 95 wt% Pt-5 wt% Ni alloy is known to have an electrical resistivity 0f2.35 x 10”7 Q-mat room
temperature (25°C). Calculate the composition of a platinum-nickel alloy that gives a room-temperature

resistivity of 1.75 x 10”7 Q-m. The room-temperature resistivity ofpure platinummay be determined fromthe data

IQ7DEQI -4/ DWXP HIKDVS MMQXP BQGQIFNFDRIP D YRAG XROIRQY

Solution

This problem asks that we calculate the composition of a platinum-nickel alloy that has a room temperature
resistivity of 1.75 x 107 Q-m. The first thing to do is, using the 95 Pt-5 Ni resistivity data, determine the impurity

contribution, and, fromthis result, calculate the constant A in Equation 18.11. Thus,

Protal = 2.35 x 1077 (Q-m) = p; + p;

From Table 18.1, for pure platinum, and using Equation 18.4

1 ! = 1064 x 1077 (Q-m)
c  0.94 x107 (Q-m)™!

Pt =

Thus, for the 95 Pt-5 Ni alloy

Pi = Protal — Pt = 2.35 x 1077 — 1.064 x 1077
=1.286x 107 (Q-m)

In the problem statement, the impurity (i.e., nickel) concentration is expressed in weight percent. However, Equation
18.11 calls for concentration in atom fraction (i.e., atom percent divided by 100). Consequently, conversion from
weight percent to atom fraction is necessary. (Note: we now choose to denote the atom fraction of nickel as CI'\H,

and the weight percents of Niand Pt by Cy; and Cp, respectively.) Using these notations, this conversion may be

accomplished by using a modified form of Equation 4.6a as

\J
¢l = Cni - Cnifw
b 1000 Cridec+ CpiAy




Here Ay; and Ap, denote the atomic weights of nickel and platinum (which values are 58.69 and 195.08 g/mol,

respectively). Thus

' (5 wt%)(195.08 g/mol)

NI T (5 wi%)(195.08 g/mol)+ (95 wi%)(58.69 g/mol)

=0.15

Now, solving for A in Equation 18.11
Pi

A: ' ]
CNiil_cNii

-7 _
1286 X107 -m) _ o1 106 (@-m)
0.15)(1 — 0.15)

|

Now it is possible to compute the o\

; to give a room temperature resistivity of 1.75 x 107 Q-m. Again, we must

determine p; as
Pi = Ptotal ~ Pt
= 1.75%x 107 - 1.286 x 107 = 4.64 x 10°% (Q-m)

If Equation 18.11 is expanded, then

Or, rearranging this equation, we have

12 '
AcNi - ACN]. +p. =0

1

Now, solving for CI'\Ii (using the quadratic equation solution)



Again, fromthe above
A=1.01x 10° (Q-m)
p;=4.64x 108 (Q-m)

which leads to

101 x 107644/ (1.01 x 1070)2 — (4)(1.01 x 107°)(4.64 x 1078)

Ni (2)(1.01 x 1079)

And, taking the negative root,

ox; = 0.0483

Or, in terms of atom percent,

C 2= 100¢¢2= (100)(0.0483 ) = 4.83 at%

While the concentration of platinumis

C% 100 — CP2=100.00 — 4.83 = 95.17 at%

Now, converting this composition to weight percent Ni, requires that we use Equation 4.7a as

CNiA\Ii

N S
ChiAi + Cpy Apr

x 100

B (4.83 at%)(58.69 g/mol)

- 100
(4.83 at%)(58.69 g/mol) + (95.17 at%)(195.08 g/mol) |

=1.50 wt%



18.D2 Using information contained in Figures 18.8 and 18.38, determine the electrical conductivity ofan

80 wt% Cu-20 wt% Zn alloy at -150°C (-240°F).

Solution

This problemasks that we determine the electrical conductivity of an 80 wt% Cu-20 wt% Zn alloy at
—150°C using information contained in Figures 18.8 and 18.38. In order to solve this problem it is necessary to

employ Equation 18.9 which is of the form
Piotal ~ Pt * P

since it is assumed that the alloy is undeformed. Let us first determine the value of p; at room temperature (25°C)

which value will be independent of temperature. From Figure 18.8, at 25°C and for pure Cu, p(25)=1.75 x 108 Q-m.

Now, since it is assumed that the curve in Figure 18.38 was generated also at room temperature, we may take p as
Piotal(25) at 80 wt% Cu-20 wt% Zn which has a value 0f 5.3 x 108 Q-m. Thus

pi = ptotal(zs) - Pt(25)

=53 x108%0Q-m—-175 x 108Q-m =355 x 108Q-m

Finally, we may determine the resistivity at —150°C, p,..,(~=150), by taking the resistivity of pure Cu at —150°C from
Figure 18.8, which gives us p(~150) = 0.55 x 108 O-m. Therefore

Protal (-150) = pj + p¢(~150)

=355 x 108Q-m +055 x 1083Q-m =410 x 108 Q-m

And, using Equation 18.4 the conductivity is calculated as

L ! =24 x 107 (Q-m)!
P 410 x1083Q-m

c =



18.D3 Is it possible to alloy copper with nickel to achieve a minimum tensile strength of375 MPa (54,400
psi) and yet maintain an electrical conductivity of2.5 x 10 (Q-m)™"? Ifnot, why? Ifso, what concentration of

nickel is required? You may want to consult Figure 7.16a.

Solution

To solve this problem, we want to consult Figures 7.16a and 18.9 in order to determine the Ni concentration
ranges over which the tensile strength is greater than 375 MPa (54,500 psi) and the conductivity exceeds 2.5 x 10°
©@-my’L.

From Figure 7.16a, a Ni concentration greater than about 30 wt% is necessary for a tensile strength in excess

of 375 MPa. In Figure 18.9 is plotted the resistivity versus the Ni content. Since conductivity is the reciprocal of
1

resistivity, the resistivity must be less than 40 x 1078 Q-m-ie., ]
2.5x10° (Q-m)~

. According to the figure, this

will be the case for Ni concentrations less than 32.5 wt%.
Hence, it is possible to prepare an alloy meeting the criteria. The concentration of Ni would have to lie

between about 30 and 32.5 wt%.



Extrinsic Semiconduction
Factors That Affect Carrier Mobility

18.D4 Specify an acceptor impurity type and concentration (in weight percent) that will produce a p-type

silicon material having a room temperature electrical conductivity of 50 (Q-m)™.

Solution

First of all, those elements which, when added to silicon render it p-type, lie one group to the left of silicon
IQWHSHIRGE SWEG 'WHVHIQFOGHWHY IRXS §,,$ 'HDP HQWH) I XUH' 4 %-i.e., boron, aluminum, gallium, and indium.
Since this material is extrinsic and p-type, p >> n, and the electrical conductivity is a function of the hole

concentration according to Equation 18.17. Also, the number of holes is about equal to the number of acceptor
impurities, N,. That is

p~N,

From Equation 18.17, the conductivity is a function of both the hole concentration (p) and the hole mobility ().

Furthermore, the room-temperature hole mobility is dependent on impurity concentration (Figure 18.18). One way to
solve this problemis to use an iterative approach—i.e., assume some acceptor impurity concentration (which will also

equal the value of p), then determine a "calculated" hole mobility from Equation 18.17—i.e.,

and, finally, compare this mobility with the "measured”" value from Figure 18.18, taken at the assumed p (ie., N,)

value.

Let us begin by assuming that N, = 1022 3. Thus, the "calculated" mobility value is

c 50 (Q—m)~!

= - =0.0312 m?/V-
plel (1022 m>3)(1.602 x 1071 C) " °

Hp

From Figure 18.18, at an impurity concentration of 1022 m3 the "measured" hole mobility is 0.0362 rr12/V—s, which is
slightly higher than the "calculated" value.

For our next choice, let us assume a lower impurity concentration, say 5 x 102! mr3. At this lower
concentration there will be an increase of both "calculated" and "measured" electron mobilities. The "calculated"

value is just



_ o _ 50 (Q—m)!
plel (5 x 102! m3)(1.602 x 1071 C)

iy =0.0624 m?/V-s

Whereas, Figure 18.18 yields a "measured" p, of 0.0394 m%/V-s, which is lower than the "calculated” value.

Therefore, the correct impurity concentration will lie somewhere between 5 x 102! and 1022 m3 probably closer to

the latter of these two values. At8.0x 1022 m'3, both "measured" and "calculated" , values are about equal (0.039
mz/V-s).

It next becomes necessary to calculate the concentration of acceptor impurities in atom percent. This
computation first requires the determination of the number of silicon atoms per cubic meter, Ng;, using Equation 4.2,

which is as follows

N p'.
_ AFSi
Ng, = —=3L

' A5

_ (6.022 x 1023 atoms/mol)(2.33 g/cm?)(10® cm? /m?)
28.09 g/mol

=50x 10288 m3

(Note: in the above discussion, the density of silicon is represented by péi in order to avoid confusion with

resistivity, which is designated by p.)

. . .o . . ' . . .
The concentration of acceptor impurities in atom percent (C,) is just the ratio of N, and (N, + Ng;)

multiplied by 100 as

_ 8.0 x 1022 m™3
(8.0 x 1022 m™3) + (5.0 x 1028 m3)

x 100 = 1.6 x 10 at%

Now, conversion to weight percent (C,) is possible using Equation 4.7a as

'
c, = —Sah 00
Ca Ay + CgiAg;



where A, and Ag; are the atomic weights of the acceptor and silicon, respectively. Thus, the concentration in weight

percent will depend on the particular acceptor type. For example, for boron

Cp = % % 100
Cp A + Csifgi

B (1.6 x 107 at%) (10.81 g/mol)

= x 100
(1.6 x 1074 at%) (10.81 g/mol) + (99.99984 at%)(28.09 g/mol)

=6.16x 10~ wt%

Similar calculations may be carried out for the other possible acceptor impurities which yield

Cp = 154 x 107 wt%

Cga = 397 x 107 wt%

Cp, = 654 x 10 wt%



18.D5 One integrated circuit design calls for diffising boron into very high purity silicon at an elevated
temperature. It is necessary that at a distance 0.2 um from the surface of the silicon wafer, the room-temperature
electrical conductivity be 1.2 x 10° (Q-m)”'. The concentration of B at the surface of the Si is maintained at a
constant level of 1.0 x 10% m?; furthermore, it is assumed that the concentration of B in the original Si material is
negligible, and that at room temperature the boron atoms are saturated. Specify the temperature at which this
diffusion heat treatment is to take place if the treatment time is to be one hour. The diffusion coeflicient for the

diffusion of Bin Si is a function oftemperature as

347 kJ/molJ

D(m?/s) = 24 x 1074 ex (—
(m*/s) p RT

Solution

This problem asks for us to determine the temperature at which boron is to be diffused into high-purity
silicon in order to achieve a room-temperature electrical conductivity of 1.2 x 103 (Q—m)'1 at a distance 0.2 um from
the surface if the B concentration at the surface is maintained at 1.0 x 102 m™. Tt is first necessary forus to compute
the hole concentration (since B is an acceptor in Si) at this 0.2 um location.

From Equation 18.17, the conductivity is a function of both the hole concentration (p) and the hole mobility
(k). Furthermore, the room-temperature hole mobility is dependent on impurity concentration (Figure 18.18). One

way to solve this problem is to use an iterative approach—i.e., assume some boron concentration, Ng (which will

also equal the value of p), then determine a "calculated" hole mobility from Equation 18.17—i.e.,

and then compare this mobility with the "measured" value from Figure 18.18, taken at the assumed p (i.e., Ng).

Let us begin by assuming that N = 1023 mr3. Thus, the "calculated" mobility value is

c 12 x 103 Q-m)~!

- = =0.075 m?/V-
plel (1023 m73)(1.602 x 10717 C) " )

Hh

From Figure 18.18, at an impurity concentration of 1023 m3 the "measured" hole mobility is 0.024 m?/V-s, which is

lower than the "calculated" value.

024

For our next choice, let us assume a higher boron concentration, say 1 m3. At this higher concentration

there will be a decrease of both "calculated" and "measured" hole mobilities. The "calculated" value is just

_ o _ 12 x 103 Q-m)~!
plel  (102* m73)(1.602 x 10717 C)

U =0.0075 m?/V-s



Whereas, Figure 18.18 yields a "measured" py, of 0.01 mz/V—s, which is lower than the "calculated" value. Therefore,

the correct impurity concentration will lie somewhere between 1023 and 1024 m3. At 6.0 x 1023 m'3, "measured" and

"calculated" values are about equal (0.0125 mz/V-s).

With regard to diffusion, the problem is one involving the nonsteady-state diffusion of B into the Si,
wherein we have to solve for temperature. Temperature is incorporated into the diffusion coefficient expression

given in the problem. But we must first employ the solution to Fick's second law for constant surface composition
ERXQGY 'FRQGIMRQVY TXDIRQY < LL[QL\KB/‘HSUHWIRQCO is taken to be zero inasmuch as the problem stipulates that

the initial boron concentration may be neglected. Thus,

c.-C
X—0=l—erf[ X ]

C,-C, 2./Dt

6.0 x 1023m3 -0 X
=1 —erf

1.0x102m>3 -0 2.,/ Dt

which reduces to

0.9400 = erf{LJ

2,/Dt

In order to solve this expression for a value 24% of it is necessary to interpolate using data in Table 5.1. Thus

z erf(z
1.3 0.9340
z 0.9400
1.4 0.9523

z —1.3 _ 0.9400 — 0.9340
14 -13 09523 - 0.9340

From which, z- 41 Z KIFK VKD



X

24/Dt

1.3328 =

Inasmuch as there are 3600 s/h (=t) and x=0.2 um (=2 x 10”7 m) the above equation becomes

2 x10"m

2./ (D)(3600 s)

1.3328 =

which, when solving for the value of D, leads to

2
-7
_ ! (2“0 M 156 %1078 m2/s
3600 s| (2)(1.3328)

Now, equating this value to the expression for D given in the problem gives

347,000 J/mol
(8.31 J/mol-K)(T)

D =156 x 1013 m?s = (24 x 10'4)exp{—

To solve for T, let us take the natural logarithms of both sides ofthe above equation; this leads to

In(1.56 x 10718) = In(2.4 x 1074) — 22700
831T
4
41,002 = —8.335 — @

which yields a value for T of 1278 K (1005°C).



Conduction in Ionic M aterials

18.D6 Problem 18.47 noted that FeO (wiistite) may behave as a semiconductor by virtue of the
transformation of Fe’* to Fe’ and the creation of Fe’” vacancies; the maintenance of electroneutrality requires
that for every two Fe’* ions, one vacancy is formed. The existence of these vacancies is reflected in the chemical
formula of this nonstoichiometric wiistite as Fe( - O, where x is a small number having a value less than unity.
The degree of nonstoichiometry (i.e., the value ofx) may be varied by changing temperature and oxygen partial
pressure. Compute the value of x that is required to produce an Fe; _ O material having a p-type electrical
conductivity of 2000 (Q-m)" DWXP HAKDWAKH KRQI P REIOW £V4¢ % 107 m’/V-s, the crystal structure for FeO is

sodiumchloride (with a unit cell edge length 0f0.437 nm), and that the acceptor states are saturated.

Solution

This problem asks, for the nonstoichiometric Fe(l ) X)O, given the electrical conductivity [2000 (Q-m)'l] and

hole mobility (1.0 x 10_5 mZ/V-s) that we determine the value of x. It is first necessary to compute the number of

holes per unit volume (p) using Equation 18.17. Thus

__©
|e|Hh

p

2000 (Q-m)’!

= = 125 x 1027 holes/m3
(1.602 x 10712 C)(1.0 x 107 m?/V-5)

Inasmuch as it is assumed that the acceptor states are saturated, the number of vacancies is also 1.25 x 1027 m3.
Next, it is possible to compute the number of vacancies per unit cell by taking the product of the number of vacancies

per cubic meter times the volume of a unit cell. This volume is just the unit cell edge length (0.437 nm) cubed:

FGIES (25 1027 (0457 1070} 010
unit ce

A unit cell for the sodium chloride structure contains the equivalence of four cations and four anions. Thus, if we
take as a basis for this problem 10 unit cells, there will be one vacancy, 40 o* ions, and 39 iron ions (since one of the
iron sites is vacant). (It should also be noted that since two Fe3* ions are created for each vacancy, that of the 39 iron
ions, 37 of them are Fe2™ and 2 of themare Fe3™). In order to find the value of (1 — x) in the chemical formula, we just
take the ratio of the number oftotal Fe ions (39) and the number of total Fe ion sites (40). Thus

39
1-x) = > = 0975
== %



Or the formula for this nonstoichiometric material is FeO 97 5O.



Semiconductor Devices

18.D7 One ofthe procedures in the production ofintegrated circuits is the formation ofa thin insulating
layer of SiO, on the surface ofchips (see Figure 18.26). This is accomplished by oxidizing the surface ofthe silicon
by subjecting it to an oxidizing atmosphere (i.e., gaseous oxygen or water vapor) at an elevated temperature. The
rate of growth ofthe oxide film is parabolic—that is, the thickness of the oxide layer (x) is a function oftime (t)

according to the following equation:
x> =Bt (18.37)

Here the parameter B is dependent on both temperature and the oxidizing atmosphere.
(a) For an atmosphere of O, at a pressure of 1 atm, the temperature dependence of B (in units of m’/h) is

as follows:

(18.382)

1.24 eVJ
KT

B =800 exp (—

where k is Boltmann’s constant (8.62 x 10~ eV/atom) and Tis in K. Calculate the time required to grow an oxide
layer (in an atmosphere ofO,) that is 75 nmthick at both 750°C and 900°C.

(b) In an atmosphere of H,O (1 atm pressure), the expression for B (again in units of m’/h) is

0.70 evJ (1838b)

B=215exp [— T

Now calculate the time required to grow an oxide layer that is 75 nm thick (in an atmosphere of H,O) at both

750°C and 900°C, and compare these times with those computed in part (a).

Solution

(a) In this portion of the problem we are asked to determine the time required to grow a layer of SiO, that is 75

nm (i.e., 0.075 um) thick on the surface of a silicon chip at 900°C, in an atmosphere of O, (oxygen pressure = 1 atm).

Thus, using Equation 18.37, it is necessary to solve for the time t. However, before this is possible, we must calculate

the value of B from Equation 18.38a as follows:

1.24eV

B = s0ex (_ 1.24 eV J

= (800) exp | —
j (800) exp { (8.62 x 1073 eV/atom- K)(900 + 273 K)

=0.00378 um?/h



Now, solving for t from Equation 18.37 using the above value for B and that x =0.075 um, we have

2 (0075 um)?

X
t = —
B 0.00378 um? /h

=149h

Repeating the computation for B at 750°C:

124 eV J

B = (800) exp L—
(8.62 x 1073 eV/atom- K)(750 + 273K)

=6.25x 104 um?/h

And solving for the oxidation time as above

(0.075 um)?2

= =90h
625 x 10 um? /h

(b) This part of the problemasks for us to compute the heating times to forman oxide layer 75 nmthick at the
same two temperatures (900°C and 750°C) when the atmosphere is water vapor (1 atmpressure). At 900°C, the value

of Bis determined using Equation 18.38b, as follows:

0.70 eV

0.70 eV J

= (215)e -
j @) emp { (8.62 x 1073 eV/atom- K)(900 + 273 K)

B = 215exp (—

=0.212 pm?/h
And computation of the time t from the rearranged form of Equation 18.37, leads to

(X _ (0075 pm)?
B 0212 pm? /h

=0.0265h=955s

And at 750°C, the value of B is



0.70eV
(8.62 x 1072 eV/atom-K)(750 + 273 K)

B = (215)exp {— J = 0.0767 um? /h

Whereas the time required to grow the 75 nmoxide layer is

(_ X _ (0075 pm)?
B 0.0767 pm?/h

=0.073h=264s

From the above computations, it is very apparent (1) that the 75 nm oxide layer forms more rapidly at 900°C

(than at 750°C) in both O, and H,O gaseous atmospheres, and (2) that the oxide layer formation is more rapid in water

vapor than in oxygen.



18.D8 The base semiconducting material used in virtually all ofour modern integrated circuits is silicon.
However, silicon has some limitations and restrictions. Write an essay comparing the properties and applications

(and/or potential applications) ofsilicon and galliumarsenide.

Solution

We are asked to compare silicon and gallium arsenide semiconductors relative to properties and
applications.

The following are the characteristics and applications for Si: (1) being an elemental semiconductor, it is
cheaper to grow in single-FU VBIQHIRWP  “GL-2HEHFDIXVHRI TWHBFWRQEDQG VRKE WUH AW EHVWKVHG 1QRDOVIARTY L
(3) electronic processes are relatively slow due to the low mobilities for electrons and holes (Table 18.3).

) RU* ¥ V -599-IWIVP XFK P RUATH SHQMYHR 'STRGXFHIQDVP XFK 'DVIVIYIDIFRP SRXQGVHP IFRQGXFWU HA-¢ -
because of its electron band structure it is best used in light-HP IWQ 'GRGHVDQGVHP IFRQGXFWY DVHY B iWband
JI3'PD EHDWIGE\ DX I " $-HPFWRQIF 'SIRFHWHV'DUAP RUTISIGWDQQ'6 L'GXHIR \KHY BDWLP REIGRENRU
HPFWRQVDQG KRGOV 51 P TEVRIS WRQ'RI 'HPFWRP 1 QHMWE UDGIDMRQTYY THDWUIQ™* D WDQGWHHRUASKIQQH M HYDH

required for solar cells.



